Brief Summary

Reference


  1. Principal investigator(s): P. Ameigeiras, J. Navarro-Ortiz
    Spanish Ministry of Economic Affairs and Digital Transformation, TSI-063000-2021-28, 01/2022-12/2024
    "AI-assisted beyond 5G-6G arCHitectuRe with deterministic netwOrking for iNdustrial communicatiOnS (6G-CHRONOS)", P. Ameigeiras, J. Navarro-Ortiz, 2024
    close
    @researchproject{6gchronos, code={TSI-063000-2021-28}, title={AI-assisted beyond 5G-6G arCHitectuRe with deterministic netwOrking for iNdustrial communicatiOnS (6G-CHRONOS)}, org={Spanish Ministry of Economic Affairs and Digital Transformation}, type={national}, author={P. Ameigeiras and J. Navarro-Ortiz}, year=2024, month=12, date1={01/2022}, date2={12/2024}, funding={820.979 €}, url0="http://wimunet.ugr.es/projects/6gchronos.php", logo="http://wimunet.ugr.es/assets/img/research/projects/Logo_UNICO_I+D.png", note="ongoing"}
    close

Funded by the European Union NextGeneration

    This national project (TSI-063000-2021-28) is titled "AI-assisted beyond 5G-6G arCHitectuRe with deterministic netwOrking for iNdustrial communicatiOnS (6G-CHRONOS)". It started on January 2022 and its duration is 3 years.

Description

    The fourth industrial revolution will apply digital transformation to industrial production via enterprise-wide networks to capture data from and to exchange data between machines, devices and people. By using the Internet of Things (IoT) and cyber physical systems, conventional production will be transformed into a network of smart and interconnected devices.
    Fifth-generation wireless communications (5G) and time sensitive networking (TSN) technologies can play a key role in future industrial communications. TSN and 5G are wired and wireless technologies with strong potential for the large real-time network needed for Industry 4.0 applications. However, to achieve this vision two main challenges lie ahead. First, the 5G network should provide deterministic, reliable, high-bandwidth, low-latency communication. Second, a smooth integration between TSN and 5G is required.
    For this purpose, the 6G-CHRONOS project will design a B5G/6G network service framework that will incorporate the paradigm of Deterministic Networking as a design principle on the 5G network slicing concept to enable the low and deterministic latency required for scenarios of connected robotics and autonomous systems in Industry 4.0. Additionally, the 6G-CHRONOS project will design state-of-the art solutions to carry out the interoperation of the B5G/6G network service framework and TSN. Moreover, the 6G-CHRONOS project will implement an experimental testbed as a proof-of-concept, which will deploy a 5G network and a synchronous Time Sensitive Network in order to evaluate the performance of some relevant solutions proposed in the project.
    The results of the 6G-CHRONOS project are expected to contribute to the applicability of 5G and 6G networks to the industrial domain by providing solutions that enable industry-grade QoS with very low and deterministic end-to-end latencies (<1 ms), high data rates, and seamless integration of 5G with TSN networks for industrial applications.
    This project started on 2022 and its duration is 3 years.

Thesis

Related ongoing Ph.D. thesis

  1. Orchestration and management of independent virtualized networks for the support of new services in 5G
    Jose Antonio Ordonez-Lucena (directed by Pablo Ameigeiras)
    Defended on October 2022.
    "Orchestration and management of independent virtualized networks for the support of new services in 5G", Jose Antonio Ordonez-Lucena, University of Granada, 2022
    close
    @PhdThesis{thesisordonez,
      author      = {Jose Antonio Ordonez-Lucena},
      director    = {Pablo Ameigeiras},
      title       = {Orchestration and management of independent virtualized networks for the support of new services in 5G},
      institution = {University of Granada},
      type        = {phdthesis},
      project     = {5gcity|5gclarity|true5g|6gchronos},
      year        = {2022},
      month       = {October},
      pagetotal   = {321}
    }
    close

  2. Network Slicing Management for 5G Radio Access Networks
    Oscar Adamuz-Hinojosa (directed by Pablo Ameigeiras and Juan M. Lopez-Soler)
    Defended on April 2022, ISBN 9788411173377.
    "Network Slicing Management for 5G Radio Access Networks", Oscar Adamuz-Hinojosa, University of Granada, ISBN 9788411173377, 2022
    close
    @PhdThesis{thesisadamuz,
      author      = {Oscar Adamuz-Hinojosa},
      director    = {Pablo Ameigeiras and Juan M. Lopez-Soler},
      title       = {Network Slicing Management for 5G Radio Access Networks},
      institution = {University of Granada},
      type        = {phdthesis},
      project     = {5gcity|5gclarity|true5g|6gchronos},
      year        = {2022},
      type        = {phdthesis},
      language    = {English},
      month       = {April},
      isbn        = {9788411173377},
      pagetotal   = {380},
      pdf         = {https://digibug.ugr.es/bitstream/handle/10481/74957/80783%281%29.pdf}
    
    }
    close

  3. Multi-connectivity solutions for 5G/6G networks
    Felix Delgado-Ferro (directed by Jorge Navarro-Ortiz and Juan M. Lopez-Soler)
    Ongoing.
    "Multi-connectivity solutions for 5G/6G networks", Felix Delgado-Ferro, University of Granada
    close
    @PhdThesis{thesisdelgado,
      author      = {Felix Delgado-Ferro},
      director    = {Jorge Navarro-Ortiz and Juan M. Lopez-Soler},
      title       = {Multi-connectivity solutions for 5G/6G networks},
      institution = {University of Granada},
      type        = {phdthesis},
      project     = {5gclarity|true5g|artemis|premonition|6gchronos},
      note        = "ongoing"
    }
    close

  4. AI-assisted management of 5G private networks
    Lorena Chinchilla-Romero (directed by Pablo Ameigeiras and Pablo Muñoz)
    Ongoing.
    "AI-assisted management of 5G private networks", Lorena Chinchilla-Romero, University of Granada
    close
    @PhdThesis{thesislorena,
      author      = {Lorena Chinchilla-Romero},
      director    = {Pablo Ameigeiras and Pablo Muñoz},
      title       = {AI-assisted management of 5G private networks},
      institution = {University of Granada},
      type        = {phdthesis},
      project     = {5gclarity|true5g|6gchronos},
      note        = "ongoing"
    }
    close

  5. Optimization and orchestration of LoRaWAN networks
    Natalia Chinchilla-Romero (directed by Jorge Navarro-Ortiz)
    Ongoing.
    "Optimization and orchestration of LoRaWAN networks", Natalia Chinchilla-Romero, University of Granada
    close
    @PhdThesis{thesisnatalia,
      author      = {Natalia Chinchilla-Romero},
      director    = {Jorge Navarro-Ortiz},
      title       = {Optimization and orchestration of LoRaWAN networks},
      institution = {University of Granada},
      type        = {phdthesis},
      project     = {5gclarity|true5g|artemis|premonition|6gchronos},
      note        = "ongoing"
    }
    close


Related B.Sc. and M.Sc. thesis

  1. Configuration and performance assessment of 4G/5G networks
    M.Sc. thesis (M.Sc. Telecommunications Engineering)
    Felix Delgado-Ferro
    Defended on July 2022.
    "Configuration and performance assessment of 4G/5G networks", Felix Delgado-Ferro, 2022
    close
    @mastersthesis{delgado_2022,
      author       = {Felix Delgado-Ferro},
      title        = {Configuration and performance assessment of 4G/5G networks},
      school       = {Higher Technical School of Informatics and Telecommunications, University of Granada},
      type         = {M.Sc. thesis},
      degree       = {M.Sc. Telecommunications Engineering},
      year         = 2022,
      month        = July,
      pdf          = {https://wpd.ugr.es/~jorgenavarro/thesis/2022_TFM_FelixDelgadoFerro.pdf},
      project      = {6gchronos|true5g|5gclarity},
      note         = {This thesis obtained the maximum possible mark.}
    }
    close


Publications

Deliverables


Journals

  1. A LoRaWAN Architecture for Communications in Areas without Coverage: Design and Pilot Trials
    Felix Delgado-Ferro, Jorge Navarro-Ortiz, Natalia Chinchilla-Romero, Juan Jose Ramos-Munoz
    Electronics, 11 (5), 2022, DOI: 10.3390/electronics11050804. (IF=2.397, Q3)
    "A LoRaWAN Architecture for Communications in Areas without Coverage: Design and Pilot Trials", Felix Delgado-Ferro, Jorge Navarro-Ortiz, Natalia Chinchilla-Romero, Juan Jose Ramos-Munoz, Electronics, 11 (5), 2022. DOI: 10.3390/electronics11050804
    close
    This article proposes a system based on a long-distance communications system with low economic and energy costs that allows connectivity to be carried out independently from the existing cellular coverage in the area. In addition, it describes the design, development, implementation and analysis of an Internet of Things (IoT) architecture based on Long-Range Wide-Area Network (LoRaWAN). Moreover, the system has been deployed as a prototype, and the behavior and scope of the system have been analyzed in various real environments: urban, rural and natural. The results obtained from the analysis show that the system is suitable for working in areas without coverage such as mountains.
    close
    @Article{electronics11050804,
    AUTHOR = {Delgado-Ferro, Felix and Navarro-Ortiz, Jorge and Chinchilla-Romero, Natalia and Ramos-Munoz, Juan Jose},
    TITLE = {A LoRaWAN Architecture for Communications in Areas without Coverage: Design and Pilot Trials},
    JOURNAL = {Electronics},
    VOLUME = {11},
    YEAR = {2022},
    NUMBER = {5},
    ARTICLE-NUMBER = {804},
    URL = {https://www.mdpi.com/2079-9292/11/5/804},
    ISSN = {2079-9292},
    ABSTRACT = {This article proposes a system based on a long-distance communications system with low economic and energy costs that allows connectivity to be carried out independently from the existing cellular coverage in the area. In addition, it describes the design, development, implementation and analysis of an Internet of Things (IoT) architecture based on Long-Range Wide-Area Network (LoRaWAN). Moreover, the system has been deployed as a prototype, and the behavior and scope of the system have been analyzed in various real environments: urban, rural and natural. The results obtained from the analysis show that the system is suitable for working in areas without coverage such as mountains.},
    DOI = {10.3390/electronics11050804},
    impact = {(IF=2.397, Q3)},
    project = {6gchronos|true5g|artemis|premonition}
    }
    close

  2. A LoRaWAN Network Architecture with MQTT2MULTICAST
    Jorge Navarro-Ortiz, Natalia Chinchilla-Romero, Felix Delgado-Ferro, Juan Jose Ramos-Munoz
    Electronics, 11 (6), 2022, DOI: 10.3390/electronics11060872. (IF=2.397, Q3)
    "A LoRaWAN Network Architecture with MQTT2MULTICAST", Jorge Navarro-Ortiz, Natalia Chinchilla-Romero, Felix Delgado-Ferro, Juan Jose Ramos-Munoz, Electronics, 11 (6), 2022. DOI: 10.3390/electronics11060872
    close
    In this work, an architecture for IoT networks oriented towards environmental sustainability is presented. Due to the suitability of its characteristics in terms of coverage, power and support of a large number of devices, an enhanced LoRaWAN network has been chosen as the basis for this proposal. The architecture is completed with the virtualization of the different LoRaWAN network entities and the usage of a software-defined network for their interconnection. The publication and subscription to environmental data is carried out by using the MQTT protocol. MQTT has been optimized thanks to the use of the SDN network and the use of edge computing resources, which allows multicasting of published data. Thanks to our developed MQTT2MULTICAST protocol, latency is improved by approx. 90% and the traffic load within the SDN network is reduced by 55%. An scalability analysis shows that this solution is able to support tens of thousands of LoRaWAN gateways. The proposed architecture has been implemented using commercial equipment as a proof of concept.
    close
    @Article{electronics11060872,
    AUTHOR = {Navarro-Ortiz, Jorge and Chinchilla-Romero, Natalia and Delgado-Ferro, Felix and Ramos-Munoz, Juan Jose},
    TITLE = {A LoRaWAN Network Architecture with MQTT2MULTICAST},
    JOURNAL = {Electronics},
    VOLUME = {11},
    YEAR = {2022},
    NUMBER = {6},
    ARTICLE-NUMBER = {872},
    URL = {https://www.mdpi.com/2079-9292/11/6/872},
    ISSN = {2079-9292},
    ABSTRACT = {In this work, an architecture for IoT networks oriented towards environmental sustainability is presented. Due to the suitability of its characteristics in terms of coverage, power and support of a large number of devices, an enhanced LoRaWAN network has been chosen as the basis for this proposal. The architecture is completed with the virtualization of the different LoRaWAN network entities and the usage of a software-defined network for their interconnection. The publication and subscription to environmental data is carried out by using the MQTT protocol. MQTT has been optimized thanks to the use of the SDN network and the use of edge computing resources, which allows multicasting of published data. Thanks to our developed MQTT2MULTICAST protocol, latency is improved by approx. 90% and the traffic load within the SDN network is reduced by 55%. An scalability analysis shows that this solution is able to support tens of thousands of LoRaWAN gateways. The proposed architecture has been implemented using commercial equipment as a proof of concept.},
    DOI = {10.3390/electronics11060872},
    impact = {(IF=2.397, Q3)},
    project = {6gchronos|true5g|artemis|premonition}
    }
    close


Conferences & Workshops